an article by ELyazid Akachar and Brahim Ouhbi (Moulay Ismail University (UMI), Meknes, Morocco) and Bouchra Frikh (Sidi Mohamed Ben Abdellah University, Fez, Morocco) published in International Journal of Web Information Systems Volume 16 Issue 1 (2020)
Abstract
Purpose
The purpose of this paper is to present an algorithm for detecting communities in social networks.
Design/methodology/approach
The majority of existing methods of community detection in social networks are based on structural information, and they neglect the content information. In this paper, the authors propose a novel approach that combines the content and structure information to discover more meaningful communities in social networks. To integrate the content information in the process of community detection, the authors propose to exploit the texts involved in social networks to identify the users’ topics of interest. These topics are detected based on the statistical and semantic measures, which allow us to divide the users into different groups so that each group represents a distinct topic. Then, the authors perform links analysis in each group to discover the users who are highly interconnected (communities).
Findings
To validate the performance of the approach, the authors carried out a set of experiments on four real life data sets, and they compared their method with classical methods that ignore the content information.
Originality/value
The experimental results demonstrate that the quality of community structure is improved when we take into account the content and structure information during the procedure of community detection.
Labels:
community_detection, modularity, topic_detection, social_networks,
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment